CensSpatial - Censored Spatial Models
It fits linear regression models for censored spatial data. It provides different estimation methods as the SAEM (Stochastic Approximation of Expectation Maximization) algorithm and seminaive that uses Kriging prediction to estimate the response at censored locations and predict new values at unknown locations. It also offers graphical tools for assessing the fitted model. More details can be found in Ordonez et al. (2018) <doi:10.1016/j.spasta.2017.12.001>.
Last updated 2 years ago
2.93 score 17 scripts 322 downloadsOBASpatial - Objective Bayesian Analysis for Spatial Regression Models
It makes an objective Bayesian analysis of the spatial regression model using both the normal (NSR) and student-T (TSR) distributions. The functions provided give prior and posterior objective densities and allow default Bayesian estimation of the model regression parameters. Details can be found in Ordonez et al. (2020) <arXiv:2004.04341>.
Last updated 2 years ago
1.00 score 174 downloads