Package: CensSpatial 3.6

CensSpatial: Censored Spatial Models

It fits linear regression models for censored spatial data. It provides different estimation methods as the SAEM (Stochastic Approximation of Expectation Maximization) algorithm and seminaive that uses Kriging prediction to estimate the response at censored locations and predict new values at unknown locations. It also offers graphical tools for assessing the fitted model. More details can be found in Ordonez et al. (2018) <doi:10.1016/j.spasta.2017.12.001>.

Authors:Alejandro Ordonez, Christian E. Galarza, Victor H. Lachos

CensSpatial_3.6.tar.gz
CensSpatial_3.6.zip(r-4.5)CensSpatial_3.6.zip(r-4.4)CensSpatial_3.6.zip(r-4.3)
CensSpatial_3.6.tgz(r-4.5-any)CensSpatial_3.6.tgz(r-4.4-any)CensSpatial_3.6.tgz(r-4.3-any)
CensSpatial_3.6.tar.gz(r-4.5-noble)CensSpatial_3.6.tar.gz(r-4.4-noble)
CensSpatial_3.6.tgz(r-4.4-emscripten)CensSpatial_3.6.tgz(r-4.3-emscripten)
CensSpatial.pdf |CensSpatial.html
CensSpatial/json (API)

# Install 'CensSpatial' in R:
install.packages('CensSpatial', repos = c('https://joalor93.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/joalor93/censspatial/issues

Datasets:
  • Missouri - TCDD concentrations in Missouri (1971).
  • depth - Depths of a geological horizon.

On CRAN:

Conda:

2.93 score 17 scripts 413 downloads 10 exports 41 dependencies

Last updated 2 years agofrom:eda79c90e9. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 10 2025
R-4.5-winNOTEMar 10 2025
R-4.5-macNOTEMar 10 2025
R-4.5-linuxNOTEMar 10 2025
R-4.4-winNOTEMar 10 2025
R-4.4-macNOTEMar 10 2025
R-4.4-linuxNOTEMar 10 2025
R-4.3-winNOTEMar 10 2025
R-4.3-macNOTEMar 10 2025

Exports:algnaive12derivcormatrixderivQfundistmatrixlocalinfmeaspredgraphicspredSCLrspacensSAEMSCLSeminaive

Dependencies:BHcliexpmfansigenericsgeoRgluegmmGPArotationlatticelifecyclemagrittrMASSMatrixmnormtmomentsmsmmvtnormnlmenloptrnumDerivoptimxpillarpkgconfigpracmapsychrasterRcppRcppEigenrlangsandwichspsplancssurvivalterratibbletlrmvnmvttmvtnormutf8vctrszoo